Bodyguards Under Cover: The Status of Individual Concepts

Magdalena Schwager Frankfurt University

SALT XVII, UConn, May 11-13 2007

Magdalena Schwager Frankfurt University Bodyguards Under Cover: The Status of Individual Concepts

伺下 イヨト イヨト

- most common nouns talk about individuals
- some talk about functions or their values at a particular index

・ 回 と ・ ヨ と ・ ヨ と …

- most common nouns talk about individuals
- some talk about functions or their values at a particular index
 - actual value/occupant matters (individual, e):
 - (1) a. The temperature is ninety.
 - b. The mayor is Petra Roth.

回 と く ヨ と く ヨ と

- most common nouns talk about individuals
- some talk about functions or their values at a particular index
 - actual value/occupant matters (individual, e):
 - (1) a. The temperature is ninety.
 - b. The mayor is Petra Roth.
 - subject intensional verbs (like *rise, change*) neighbouring values matter, too (function)
 - (2) a. The temperature is rising.
 - b. The mayor is changing.

向下 イヨト イヨト

- most common nouns talk about individuals
- some talk about functions or their values at a particular index
 - actual value/occupant matters (individual, e):
 - (1) a. The temperature is ninety.
 - b. The mayor is Petra Roth.
 - subject intensional verbs (like *rise, change*) neighbouring values matter, too (function)
 - (2) a. The temperature is rising.
 - b. The mayor is changing.
 - \Rightarrow need function from indices to individuals: individual concept $\langle s, e \rangle$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- most common nouns talk about individuals
- some talk about functions or their values at a particular index
 - actual value/occupant matters (individual, e):
 - (1) a. The temperature is ninety.
 - b. The mayor is Petra Roth.
 - subject intensional verbs (like *rise, change*) neighbouring values matter, too (function)
 - (2) a. The temperature is rising.
 - b. The mayor is changing.
 - \Rightarrow need function from indices to individuals: individual concept $\langle s, e \rangle$
- Where do these individual concepts come from?

(B) (B)

• Where could individual concepts come from?

æ

- Where could individual concepts come from?
 - Iexicon (Montague)

- Where could individual concepts come from?
 - Iexicon (Montague)
 - erived during semantic composition (Lasersohn 2005)

・回 と く ヨ と く ヨ と

- Where could individual concepts come from?
 - Iexicon (Montague)
 - erived during semantic composition (Lasersohn 2005)
 - propose: perspective on the individuals (pragmatics)

回 と く ヨ と く ヨ と

- Where could individual concepts come from?
 - Iexicon (Montague)
 - erived during semantic composition (Lasersohn 2005)
 - propose: perspective on the individuals (pragmatics)
- virtues of the pragmatic analysis

回 と く ヨ と く ヨ と

- Where could individual concepts come from?
 - lexicon (Montague)
 - derived during semantic composition (Lasersohn 2005)
 - propose: perspective on the individuals (pragmatics)
- virtues of the pragmatic analysis
- problems with abstract values (temperature, price)

向下 イヨト イヨト

Montague (PTQ): Lexicon

 (at a given index , t) nouns denote: not just sets of individuals: (e, t) but sets of individual concepts: ((s, e), t)

白 と く ヨ と く ヨ と

Montague (PTQ): Lexicon

- (at a given index , t) nouns denote: not just sets of individuals: (e, t) but sets of individual concepts: ((s, e), t)
- function talk about these individual concepts:
 - (3) The temperature is rising. $\exists x [\forall y [temperature_{(w,t)}(y) \leftrightarrow x = y] \land rise_{(w,t)}(x)]$

伺 と く き と く き とう

Montague (PTQ): Lexicon

- (at a given index , t) nouns denote: not just sets of individuals: (e, t) but sets of individual concepts: ((s, e), t)
- function talk about these individual concepts:

$$\begin{array}{ll} (3) & \mbox{The temperature is rising.} \\ & \exists x [\forall y [temperature_{(w,t)}(y) \leftrightarrow x = y] \land rise_{(w,t)}(x)] \end{array}$$

• value - talk about the extensions of these individual concepts:

$$\begin{array}{ll} (4) & \mbox{The temperature is ninety.} \\ & \exists x [\forall y [temperature_{(w,t)}(y) \leftrightarrow x = y] \land x(w,t) = \\ & 90F] \end{array}$$

向下 イヨト イヨト

The Problem of the Doubled Index Dependence

Dowty, Wall, Peters (1981), attributed to Anil Gupta (p.c.), in a version from Löbner (1981):

- (5) At all worlds and times, the temperature of the air in my refrigerator is the same as the temperature of the air in your refrigerator.
- (6) The temperature of the air in my refrigerator is rising.

intuitively: \Rightarrow ; prediction Montague: \neq

(7) The temperature of the air in your refrigerator is rising.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Counterexample: model with $W = \{w\}$, $T = \{t_1, t_2, t_3\}$

At all worlds and times, the temp-of-my-ref is the temp-of-your-ref.

伺下 イヨト イヨト

Counterexample: model with $W = \{w\}$, $T = \{t_1, t_2, t_3\}$

At all worlds and times, the temp-of-my-ref is the temp-of-your-ref. $[temp-of-my-ref][(w, t_1) = \{M_1\},$ $M_1 = \{\langle (w, t_1), 15 \rangle, \langle (w, t_2), 12 \rangle, \langle (w, t_3), 8 \rangle\}$ $[temp-of-your-ref][(w, t_1) = \{Y_1\}, \dots$

Bodyguards Under Cover: The Status of Individual Concepts

Counterexample: model with $W = \{w\}$, $T = \{t_1, t_2, t_3\}$

The temperature in my refrigerator is rising. **[my ref-temp]** $(w, t_2) = \{M_2\},$ $M_2 = \{\langle (w, t_1), 12.5 \rangle, \langle (w, t_2), 25 \rangle, \langle (w, t_3), 30 \rangle \}$

Counterexample: model with $W = \{w\}$, $\overline{T} = \{t_1, t_2, t_3\}$

The temperature in your refrigerator is rising. **[[your ref-temp]** $(w, t_2) = \{Y_2\}$

- at a fixed index, *temperature* denotes a set functions that assign individuals (degrees) to indices (individual concepts) inner index dependence (IID)
- at different indices, it can denote different such sets outer index dependence (OID)

伺い イヨト イヨト

- at a fixed index, *temperature* denotes a set functions that assign individuals (degrees) to indices (individual concepts) inner index dependence (IID)
- at different indices, it can denote different such sets outer index dependence (OID)

various ways out, here:

meaning postulate (= give up outer index dependence)

・ 回 ト ・ ヨ ト ・ ヨ ト …

- at a fixed index, *temperature* denotes a set functions that assign individuals (degrees) to indices (individual concepts) inner index dependence (IID)
- at different indices, it can denote different such sets outer index dependence (OID)

various ways out, here:

- meaning postulate (= give up outer index dependence)
- intensions of Fregean definite descriptions (Lasersohn 2005)
 (= give up inner index dependence)

・ 同 ト ・ ヨ ト ・ ヨ ト

- at a fixed index, *temperature* denotes a set functions that assign individuals (degrees) to indices (individual concepts) inner index dependence (IID)
- at different indices, it can denote different such sets outer index dependence (OID)

various ways out, here:

- meaning postulate (= give up outer index dependence)
- intensions of Fregean definite descriptions (Lasersohn 2005)
 (= give up inner index dependence)
- conceptual covers: outer index dependence = semantics, inner index dependence = pragmatics

<ロ> (四) (四) (三) (三) (三) 三

Montague's Forgotten Meaning Postulate

- constrain outer index dependence:
- cf. Dowty, Wall, Peters (1981); spelt out as (8) by Lasersohn (2005):

(8)
$$\forall \mathbf{x} \Box \lambda(\mathbf{w}, \mathbf{t}) [\alpha_{(\mathbf{w}, \mathbf{t})}(\mathbf{x}) \rightarrow \Box \lambda(\mathbf{w}, \mathbf{t}) \alpha_{(\mathbf{w}, \mathbf{t})}(\mathbf{x})],$$

where $\alpha =$ **temperature** or **price**

- needs to be refined to take into account implicit arguments: (don't exchange e.g. *temperature of Cécile's refrigerator* for *temperature of Ede's refrigerator*, ...)
- Meaning Postulates are not unproblematic. . . (cf. Zimmermann 2000)

・ 同 ト ・ ヨ ト ・ ヨ ト

Lasersohn: Deriving Individual Concepts (1)

• ad outer index dependence: objects that fall under the denotation of common nouns should be allowed to vary from index to index (*keep!*)

白 と く ヨ と く ヨ と

Lasersohn: Deriving Individual Concepts (1)

- ad outer index dependence: objects that fall under the denotation of common nouns should be allowed to vary from index to index (*keep!*)
- ad inner index dependence: 'forced by Montague's treatment of the definite article as a Russellian quantifier' (give up!) ther ≡ λP((s,e),t) λQ((s,e),t).∃x[∀y[P(y) ↔ y = x] ∧ Q(x)] (Q = rise requires an intensional argument, so, the restrictor

has to be of that type, too)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lasersohn: Deriving Individual Concepts (1)

- ad outer index dependence: objects that fall under the denotation of common nouns should be allowed to vary from index to index (*keep!*)
- ad inner index dependence: 'forced by Montague's treatment of the definite article as a Russellian quantifier' (give up!) ther ≡ λP((s,e),t) λQ((s,e),t).∃x[∀y[P(y) ↔ y = x] ∧ Q(x)] (Q = rise requires an intensional argument, so, the restrictor

 $(\mathbf{q} = \mathbf{nse}$ requires an intensional argument, so, the restrictor has to be of that type, too)

 <u>use:</u> Fregean definite descriptions denote individuals e their intensions are (s, e) (= individual concepts)

소리는 소문은 소문을 가 문을 다.

Deriving Individual Concepts (2)

- **temperature** as actual temperature value(s): $\langle s, \langle e, t \rangle \rangle$ function: the intension of (the unique) temperature (value) $\langle s, e \rangle$
- untouched: rise: $\langle s, \langle \langle s, e \rangle, t \rangle \rangle$
- Fregean (presuppositional) *the*: $the_{f} \equiv \lambda P_{\langle s, \langle e, t \rangle \rangle} \lambda Q_{\langle \langle s, e \rangle, t \rangle} Q(\lambda(w, t).\iota u[P_{(w,t)}(u)])$
 - (9) $\llbracket \iota \mathbf{u} \phi \rrbracket^g(w, t)$ is the unique object dsuch that $\llbracket \phi \rrbracket^{g[\mathbf{u}/d]}(w, t) = 1$ if such an object d exists; undefined otherwise.

 $\lambda(w, t).\iota u[temperature_{(w,t)}(u)]$ denotes always the same function that picks out the temperature at each index

(1) マン・ション・ (1) マン・

Applying Lasersohn's Approach

• value:

(10) The temperature is ninety. $\iota u[temperature_{(w,t)}(u)] = 90F$

白 と く ヨ と く ヨ と

Applying Lasersohn's Approach

• value:

- (10) The temperature is ninety. $\iota u[temperature_{(w,t)}(u)] = 90F$
- function:
 - (11) The temperature is rising. rise_(w,t)(λ (w,t). ι u[temperature_(w,t)(u)])

向下 イヨト イヨト

Applying Lasersohn's Approach

• value:

(10) The temperature is ninety. $\iota u[temperature_{(w,t)}(u)] = 90F$

• function:

(11) The temperature is rising. rise_(w,t)(λ (w,t). ι u[temperature_(w,t)(u)])

- South readings
- Simpler types
- removes unintuitive multiplicity

通 とう ほう ううせい

Other (true) quantifiers?

- *temperature* (of the salient location): inherently functional, singleton set
- implicit relational argument can vary (e.g. over cities):
 - (12) a. Three temperatures are rising.
 - b. Many temperatures are rising.
 - c. All temperatures are rising.
 - d. A few temperatures are rising.
 - e. No temperature is rising.
 - f. Every temperature is rising.

 \Rightarrow Romero (2006): $\langle \langle s, e \rangle, t \rangle$ -extensions for nouns after all (+ meaning postulate against OID over time within one world)

A (2) × (3) × (3) ×

Extending Lasersohn

• take serious the implicit relational argument of temperature: $\langle s, \langle e, \langle e, t \rangle \rangle \rangle$

回 と く ヨ と く ヨ と

Extending Lasersohn

- take serious the implicit relational argument of *temperature*: $\langle s, \langle e, \langle e, t \rangle \rangle \rangle$
- quantify over the implicit argument (introduce **most**_{rel})
 - Most temperatures are rising.
 Most contextually given objects x are such that the intension of 'the unique temperature of x' is rising.

伺 ト イヨト イヨト

Extending Lasersohn

- take serious the implicit relational argument of *temperature*: $\langle s, \langle e, \langle e, t \rangle \rangle \rangle$
- quantify over the implicit argument (introduce most rel)
 - (13) Most temperatures are rising. Most contextually given objects x are such that the intension of 'the unique temperature of x' is rising.
- proportion problem with non-injective functions?
 in general: Don't quantify over implicit arguments!
 - (14) Most mothers love their children.
 - $\not\Leftrightarrow$ Most children x are such that x's mother loves x.

<u>decide:</u> if two cities have exactly the same temperature at all worlds and times, this analysis counts them twice (- wanted?)

Problem: 2 Types of Properly Relational Nouns

- Funktionenbündel (bundle of functions, Löbner 1979):
 - (15) a. Three critical values (*intended: of Smith*) are rising.
 - b. Three (German) ministers have changed.

回 と く ヨ と く ヨ と

Problem: 2 Types of Properly Relational Nouns

- Funktionenbündel (bundle of functions, Löbner 1979):
 - (15) a. Three critical values (*intended: of Smith*) are rising.
 - b. Three (German) ministers have changed.
 - (i) interested in one patient only, (ii) if the sentence is true, there is not unique critical value of that one patient
 - <u>but</u>: each critical value/minister has a unique connection to the implicit argument: Smith's (unique) *blood pressure/body temperature/concentration of cholesterol; ministers* - by departments, ...

< 回 > < 回 > < 回 > <

Problem: 2 Types of Properly Relational Nouns

- Funktionenbündel (bundle of functions, Löbner 1979):
 - (15) a. Three critical values (*intended: of Smith*) are rising.
 - b. Three (German) ministers have changed.
- sets without roles: simply a set of objects (connected to the relational argument)
 - (16) a. Most pictures on Jordan's wall have changed.
 - b. Three bodyguards have changed.

・ 同下 ・ ヨト ・ ヨト

Two Tasks Open

- account for the quantificational data with functional but also properly relational nouns:
 - (17) a. Every temperature is rising right now.
 - b. At least one critical value is rising.
 - c. Most mayors have changed.

回 と く ヨ と く ヨ と

Two Tasks Open

- account for the quantificational data with functional but also properly relational nouns:
 - (17) a. Every temperature is rising right now.
 - b. At least one critical value is rising.
 - c. Most mayors have changed.
- Nathan's puzzle (functional nouns/Funktionenbündel vs. sets without roles)
 - (18) Three mayors changed. (*PC*)
 - (19) Three bodyguards changed. (*only: SC*)

set change (SC): overall set of bodyguards/mayors changes pointwise change (PC): three cities have a different mayor afterwards (set of mayors may stay the same)

Quantification under Conceptual Covers

 at an index, nouns denote sets of individuals (= Lasersohn) we use individual concepts to individuate them (← pragmatics)

回り くほり くほり

Quantification under Conceptual Covers

- at an index, nouns denote sets of individuals (= Lasersohn) we use individual concepts to individuate them (← pragmatics)
- Aloni (2000): quantification, belief attribution and questioning proceed w.r.t. methods of identification

Conceptual Cover

Given a set of indices $(W \times T)$ and a universe of individuals D, a conceptual cover CC based on $(W \times T, D)$ is a set of functions $(W \times T) \rightarrow D$ such that: $(\forall (w, t) \in W \times T)(\forall d \in D)(\exists ! c \in CC)[c(w, t) = d]$

= set of individual concepts, s.t. at all indices
(i) all individuals are picked out (existence)
(ii) each individual is picked out by only once (uniqueness)

Contextual Perspectives at Work

Which cover is salient depends on the contextual perspective:

(20) Who was president of Mali in 2000?

What is a legitimate answer? - Depends on salient cover!

白 と く ヨ と く ヨ と

Contextual Perspectives at Work

Which cover is salient depends on the contextual perspective:

(20) Who was president of Mali in 2000?a. Him! (at a cocktail reception)

What is a legitimate answer? - Depends on salient cover! Rigid Cover = $\{\lambda(w, t).d \mid d \in D\}$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Contextual Perspectives at Work

Which cover is salient depends on the contextual perspective:

- (20) Who was president of Mali in 2000?
 - a. Him! (at a cocktail reception)b. Alpha Oumar Konaré. (at a history exam)

What is a legitimate answer? - Depends on salient cover! Rigid Cover = $\{\lambda(w, t).d \mid d \in D\}$ Naming Cover = $\{\lambda(w, t).a.o.konare'_{(w,t)}, \lambda(w, t).g.w.bush_{(w,t)}, \lambda(w, t).a.merkel_{(w,t)}; ... \}$

(過) (目) (日)

Change Under Cover

Quantification Under Cover

restrictor describes a set of **individuals**, but **nuclear scope predicate** applies to the **individual concepts** used to pick them out

・ 同 ト ・ ヨ ト ・ ヨ ト …

Change Under Cover

Quantification Under Cover

restrictor describes a set of **individuals**, but **nuclear scope predicate** applies to the **individual concepts** used to pick them out

- interpretation proceeds with respect to a set ∏ of most salient conceptual covers (usually, just one): [[·]]^Π
- D also contains the absurd individual O (ignored by the cover condition *uniqueness*)
 [[change]]^Π(w, t)(f) = 1 iff f(w, t) = O, and
 f(w, t⁻) ≠ f(w, t⁺), where t⁻ <[!] t <[!] t⁺.
- denotation of common noun α changes at $(w, t) \rightarrow \mathbf{O} \in \llbracket \alpha \rrbracket^{\Pi}$

Generalized Quantifiers under Cover

• pointwise application of a set of functions $F = \{f_1, \ldots, f_n\}$:

(21)
$$F[w,t] := \{f_i(w,t) \mid f_i \in F\}$$

• quantification:

・ 回 ト ・ ヨ ト ・ ヨ ト ・

Generalized Quantifiers under Cover

• pointwise application of a set of functions $F = \{f_1, \ldots, f_n\}$:

(21)
$$F[w,t] := \{f_i(w,t) \mid f_i \in F\}$$

quantification:

[most/every/three/...]^{Π}(w, t)($Q_{\langle s, \langle e, t \rangle \rangle}$)($P_{\langle \langle s, e \rangle, t \rangle}$) = 1 iff for every $F \in \Pi$ and $F_1 = \{f_1, \ldots, f_n\} \subseteq F$ such that either (i) for all $f_i \in F_1$: $f_i(w, t) \neq \bigcirc$ and $F_1[w, t] = Q(w, t)$, or (ii) $F_1[w, t^-] = Q(w, t^-)$ and $F_1[w, t^+] = Q(w, t^+)$: MOST/EVERY/THREE...($\lambda f. f \in F_1$)($\lambda f.P(f)$)

$$[Three \ bodyguards/mayors \ changed.]]^{\Pi}(w, t) = 1 \ \text{iff}$$
for every $F \in \Pi$ and $F_1 = \{f_1, \ldots, f_n\} \subseteq F$ such that either
(i) for all $f_i \in F_1$: $f_i(w, t) \neq \textcircled{O}$ and
 $F_1[w, t] = [[bodyguard/mayor]]^{\Pi}(w, t)$, or
(ii) $F_1[w, t^-] = [[bodyguard/mayor]]^{\Pi}(w, t^-)$ and
 $F_1[w, t^+] = [[bodyguard/mayor]]^{\Pi}(w, t^+)$:
 $| \{f_i \in F_1 \mid f_i(w, t^-) \neq f_i(w, t^+)\} | \geq 3$

<ロ> (四) (四) (三) (三) (三)

$$[[Three bodyguards/mayors changed.]]^{\Pi}(w, t) = 1 \text{ iff} \\ \text{for every } F \in \Pi \text{ and } F_1 = \{f_1, \dots, f_n\} \subseteq F \text{ such that either} \\ (i) \text{ for all } f_i \in F_1: f_i(w, t) \neq \textcircled{O} \text{ and} \\ F_1[w, t] = [[bodyguard/mayor]]^{\Pi}(w, t), \text{ or} \\ (ii) F_1[w, t^-] = [[bodyguard/mayor]]^{\Pi}(w, t^-) \text{ and} \\ F_1[w, t^+] = [[bodyguard/mayor]]^{\Pi}(w, t^+): \\ | \{f_i \in F_1 \mid f_i(w, t^-) \neq f_i(w, t^+)\} | \geq 3 \end{cases}$$

Co-operative Individuation:

If Π contains no cover that passes condition (i) or (ii), consider less salient or even arbitrary covers.

(cf Aloni (2005) for more general pragmatic principles in bi-directional OT on what covers are considered)

白 ト イヨ ト イヨト

• **[bodyguard]**^{Π}(w, t^-) = {*john, peter, mary, sally*} **[bodyguard]**^{Π}(w, t) = {*sally,* **\bigcirc**} **[bodyguard]**^{Π}(w, t^+) = {*simon, susi, sandro, sally*}

伺 と く き と く き とう

- **[bodyguard]**^{Π}(w, t^-) = {*john, peter, mary, sally*} **[bodyguard]**^{Π}(w, t) = {*sally,* **\bigcirc**} **[bodyguard]**^{Π}(w, t^+) = {*simon, susi, sandro, sally*}

per Cooperative Identification: try all covers that meet (ii)

- **[bodyguard]**^{Π}(w, t^-) = {*john, peter, mary, sally*} **[bodyguard]**^{Π}(w, t) = {*sally,* **\bigcirc**} **[bodyguard]**^{Π}(w, t^+) = {*simon, susi, sandro, sally*}
- salient cover: naming NC (most likely)
 <u>but:</u> (i) is not applicable: O ∈ **[bodyguard]**^Π(w, t)
 and (ii) no subset of NC describes exactly the bodyguards at both (w, t⁻) and (w, t⁺)

per Cooperative Identification: try all covers that meet (ii)

	f_1	f_2	f ₃	f ₄
(w,t^{-})	john	peter	mary	sally
(w, t)	sally	٥	٥	٥
(w,t^+)	simon	susi	sandro	sally

- **[bodyguard]**^{Π}(w, t^-) = {*john, peter, mary, sally*} **[bodyguard]**^{Π}(w, t) = {*sally,* **\bigcirc**} **[bodyguard]**^{Π}(w, t^+) = {*simon, susi, sandro, sally*}
- salient cover: naming NC (most likely)
 <u>but:</u> (i) is not applicable: O ∈ **[bodyguard]**^Π(w, t)
 and (ii) no subset of NC describes exactly the bodyguards at both (w, t⁻) and (w, t⁺)

per Cooperative Identification: try all covers that meet (ii)

	f_1	f_2	<i>f</i> ₃	f ₄
(w, t^{-})	john	peter	mary	sally
(w, t)	sally	٥	O	٥
(w,t^+)	susi	simon	sandro	sally

- **[bodyguard]**^{Π}(w, t^-) = {*john, peter, mary, sally*} **[bodyguard]**^{Π}(w, t) = {*sally,* **\bigcirc**} **[bodyguard]**^{Π}(w, t^+) = {*simon, susi, sandro, sally*}
- salient cover: naming NC (most likely)
 <u>but:</u> (i) is not applicable: O ∈ **[bodyguard]**^Π(w, t)
 and (ii) no subset of NC describes exactly the bodyguards at both (w, t⁻) and (w, t⁺)

per Cooperative Identification: try all covers that meet (ii)

	f_1	f_2	f ₃	f ₄
(w,t^{-})	john	peter	mary	sally
(w, t)	sally	٥	\mathbf{O}	O
(w,t^+)	sandro	sally	simon	susi

- **[bodyguard]**^{Π}(w, t^-) = {*john, peter, mary, sally*} **[bodyguard]**^{Π}(w, t) = {*sally,* **\bigcirc**} **[bodyguard]**^{Π}(w, t^+) = {*simon, susi, sandro, sally*}
- salient cover: naming NC (most likely)
 <u>but:</u> (i) is not applicable: O ∈ **[bodyguard]**^Π(w, t)
 and (ii) no subset of NC describes exactly the bodyguards at both (w, t⁻) and (w, t⁺)

per Cooperative Identification: try all covers that meet (ii)

	f_1	<i>f</i> ₂	f ₃	f ₄
(w,t^{-})	john	peter	mary	sally
(w, t)	sally	O	\mathbf{O}	\mathbf{O}
(w,t^+)				

- **[bodyguard]**^{Π}(w, t^-) = {*john, peter, mary, sally*} **[bodyguard]**^{Π}(w, t) = {*sally,* **\bigcirc**} **[bodyguard]**^{Π}(w, t^+) = {*simon, susi, sandro, sally*}
- salient cover: naming NC (most likely)
 <u>but:</u> (i) is not applicable: O ∈ **[bodyguard]**^Π(w, t)
 and (ii) no subset of NC describes exactly the bodyguards at both (w, t⁻) and (w, t⁺)

per Cooperative Identification: try all covers that meet (ii)

	f_1	<i>f</i> ₂	<i>f</i> 3	f ₄
(w,t^{-})	john	peter	mary	sally
(w, t)	sally	٥	0	0
(w, t^+)				

• unless the two sets differ on three elements, there will be an F_i s.t. for less than three $f \in F_i$: $f(w, t^-) \neq f(w, t^+)$. \Rightarrow Set Change

• mayors render salient: naming NC or job-cover JC NC = {{ $\lambda(w, t).wolfgang(w, t), \lambda.petra(w, t)$ }} JC = { $\lambda(w, t).\iotau[mayor-of-frankfurt_{(w,t)}(u)], \lambda(w, t).\iotau[mayor-of-stuttgart_{(w,t)}(u)]}$

伺下 イヨト イヨト

- mayors render salient: naming NC or job-cover JC NC = {{ $\lambda(w, t).wolfgang(w, t), \lambda.petra(w, t)$ }} JC = { $\lambda(w, t).\iota u[mayor-of-frankfurt_{(w,t)}(u)],$ $\lambda(w, t).\iota u[mayor-of-stuttgart_{(w,t)}(u)]$ }
- Wolfgang and Petra exchange their cities at (w, t):

(22) [[Two mayors changed.]]^{$$\Pi$$}(w, t) is
true if $\Pi = \{JC\}$ (PC), false if $\Pi = \{NC\}$ (SC)

two of the individual concepts needed to cover the mayors at (w, t^-) and (w, t^+) change at (w, t).

・ 「「」 ト ・ 三 ト ・ 二 三 ト ・

- mayors render salient: naming NC or job-cover JC NC = {{ $\lambda(w, t)$.wolfgang(w, t), λ .petra(w, t)}} JC = { $\lambda(w, t)$. ιu [mayor-of-frankfurt $_{(w,t)}(u)$], $\lambda(w, t)$. ιu [mayor-of-stuttgart $_{(w,t)}(u)$]}
- Wolfgang and Petra exchange their cities at (w, t):

(22) [[Two mayors changed.]]^{$$\Pi$$}(*w*, *t*) is
true if $\Pi = \{JC\}$ (PC), false if $\Pi = \{NC\}$ (SC)

two of the individual concepts needed to cover the mayors at (w, t^{-}) and (w, t^{+}) change at (w, t).

	NC		JC	
	Wolfgang	Petra	mayor _{Frankfurt}	mayor _{Stuttgart}
(w, t^{-})	w	р	р	W
(w,t)	(w)	(p)	0	\mathbf{O}
(w, t^+)	w	р	W	p

Magdalena Schwager Frankfurt University

Bodyguards Under Cover: The Status of Individual Concepts

In Favour of the Pragmatic Solution

- context dependence of change interpretation (Nathan 2006):
 - (23) Three pictures on Jordan's wall have changed.
 - a. pictures by who is on them \rightarrow SC-interpretation
 - b. the picture on the left wall, the picture closest to the window, $\ldots \rightarrow \mathsf{PC}$ -interpretation

向下 イヨト イヨト

In Favour of the Pragmatic Solution

- context dependence of change interpretation (Nathan 2006):
 - (23) Three pictures on Jordan's wall have changed.
 - a. pictures by who is on them \rightarrow SC-interpretation
 - b. the picture on the left wall, the picture closest to the window,... \rightarrow PC-interpretation
- intensional readings for name-like DPs:
 - (24) The temperature in my office is 36 degrees and I think *(the) 36 degrees will certainly increase.

the requires individuation by individual concept; the abstract degree individual has been introduced as *the temperature in my office*

<u>scenario</u>: at t_1 , t_2 , t_3 , we take the temperatures of Frankfurt, Amsterdam and New York

(25) The lowest temperature is rising.

<u>scenario</u>: at t_1 , t_2 , t_3 , we take the temperatures of Frankfurt, Amsterdam and New York

(25) The lowest temperature is rising.

 $\frac{R_{city}: \text{ right now, the temperature in NY is lowest, and the temperature in NY is rising}$ $CityCover = \{ \text{the temp. in F, the temp. in A, the temp. in NY } \}_{\text{city}}$

Magdalena Schwager Frankfurt University Bodyguards Under Cover: The Status of Individual Concepts

<u>scenario</u>: at t_1 , t_2 , t_3 , we take the temperatures of Frankfurt, Amsterdam and New York

(25) The lowest temperature is rising.

 $\frac{R_{ranking}}{R_{ranking}}: lower boundary of the values recorded is going up$ $RankingCover = {the lowest temperature, the second lowest$ $temperature,... the highest temperature }$

Magdalena Schwager Frankfurt University Bodyguards Under Cover: The Status of Individual Concepts

<u>scenario</u>: at t_1 , t_2 , t_3 , we take the temperatures of Frankfurt, Amsterdam and New York

(25) The lowest temperature is rising.

<u>problem</u>: right side - the two readings take into account different sets of individuals: R_{city} counts all occurrences of a value (presupposition failure!), $R_{ranking}$ counts just the values that occur

Magdalena Schwager Frankfurt University Bodyguards Under Cover: The Status of Individual Concepts

Conclusions

- nouns that can appear in subject position of intensional verbs need to have function readings in addition to value readings
- where does it come from? avoid double index dependence
- mayors, bodyguards,...: quantification is sensitive to how they are picked out (cover) - individual concepts needed for the intensional verbs
- accounts for two different change interpretations
- accounts for context dependence
- nouns with abstract (one-dimensional) values (temperature, price) can be understood as values or occurrences of values

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

References

Aloni (2000) *Quantification under Conceptual Covers*. Amsterdam: ILLC.

Dowty, Wall, Peters (1981) *Introduction to Montague Semantics*. Reidel.

Lasersohn (2005) 'The Temperature Paradox as Evidence for a Presuppositional Analysis of Definite Descriptions' *Linguistic Inquiry* 36.

Löbner (1979) Intensionale Verben und Funktionalbegriffe. Narr. Montague (1974) 'The Proper Treatment of Quantification in English'. In: Thomason (ed.) Formal Philosophy. Yale UP. Nathan (2006) ' '. Ms., MIT.

Romero (2005) 'Concealed Questions'. *Linguistics & Philosophy* 28.

Romero (2006) 'Some Paradoxes about Individual Concepts'. Invited Talk at *Sinn und Bedeutung*, Barcelona.